qwerty wrote:the barrel shoud be half way into the T so the piston meets it in the middle and the air has something to push back.
About the piston: it should be atleast the diameter of you T so it dosen't tip over.
In the picture its not a T and i know its probably not to scale but you piston is a little to small.
I'm going to disagree on the first couple points and here is why.
The valve seat in the middle of the t makes sense while the piston is closed, but is an obstruction to flow when open. It makes more sense to me to position the opening between the piston and seat when open, centered in the center of the T for the highest possible flow when open.
D4 rule says 1/2" if your piston is 2" diameter.
This is pretty much true for coax pistons where the air enters from all sides. When built into a T consideration must be given in modifying it due to the air arriving from only one side.
In a coax, a piston moving 1/4 the diameter is often considered fully open. This provides a restriction the same size entering into the space between the piston and valve seat as the valve seat provides. In a T where air can come in from only one side will require a longer opening to have little restriction. This is another reason to not have the seat half way in the middle of the T. Move it over to make room. The original comment for air flow to open the valve is still true, the valve seat should not be stuck down a hole in the leg of the T.
The length of the piston will be a function of the required stroke. In a coax where the air can enter the valve from 360 degrees, the piston does not have to be longer than the diameter. A piston only 1/2 the diameter works well when the stroke to full open is 1/3 the valve seat diameter. A piston 2/3 the valve seat diameter works well, even though this length can be less than 1/2 the piston diameter. The piston in my Mouse Musket is of this hockey puck shape and works fantastically.

Mouse Musket piston is shorter than the diameter.
As far as the size of the piston, it depends on if it is a barrel sealer or chamber sealer what size is best.
On barrel sealer pistons, the ratio of the piston OD to valve seat diameter greatly affects performance. Too small an OD makes the valve difficult to get to fire as there is too little chamber pressure to start to open it, but when they open, the low pilot pressure and lighter piston (smaller diameter and thus shorter possible length) will snap open quickly when the chamber pressure hits the full face of the piston. A larger diameter OD makes them less fussy, but due to the higher pressure in the pilot area when it opens, they tend to re-close as the chamber pressure rapidly drops and the heavier piston is slower due to the larger volume in the pilot for these.
In a chamber sealer, a close ratio piston is the slow valve as it opens early with high pilot pressure and tends to re-close as the chamber pressure drops. A large diameter piston again has the disadvantage of the larger pilot volume again, but has better snap action as the rising pressure in the valve when it opens increases the force opening it. The large diameter is discouraged in chamber sealers due to the large dead space, huge mass of the piston to have a decent size valve seat size, and as a result a longer piston. Most sprinkler valves are of the chamber sealing configuration. They are noted for the dead space between the valve seat an outlet.
To get good performance with most chamber sealer valves, a large fast pilot is required to keep ahead of the rate of chamber pressure drop to prevent re closing. This is why sprinkler valves are modified. Without the modification, they re-close several times when fired producing the telltale honk.
I hope this helps. A coaxial valve can be shorter than one built in a T. Ones built in a T need a longer stroke to provide the same opening to flow. Ones built in a t need the opening space centered on the T, not the closed valve seat. There is a balance between too large a piston OD and one too small that balances performance against reliability. A valve seat that is 0.8 and 0.9 the diameter of the piston diameter is a good starting point for a barrel sealer. If using a large piston OD in relation to the seat diameter such as the seat 1/2 the piston OD, you will want a large fast pilot to get decent performance.
In valves that require a large fast pilot, a small pilot area is highly desirable. In valves that do not require a large fast pilot such as a close ratio barrel sealer, the pilot needs to be larger. The reason for this is the sudden compression of the air in the pilot when the piston snaps back. The piston snapping back changes the volume and thus the pressure in the pilot area. A larger pilot area provides less pressure rise and thus faster opening speed.
Since good design keeps the close ratio valves closed until the pilot are pressure is low, even a piston halving the volume while doubling the absolute pressure is still providing much less force than the newly exposed piston face is providing to open it.
For example, a 7 bar chamber pressure opening a close ration valve at 25% of the chamber pressure will snap open. Here is why. 7 bar is 8 Atm. 25% of the chamber pressure is about 2 bar or 3 atm. When opening the force on the piston face increases 3X due to the increased exposed area. When the piston is all the way open, the force on the back has only increased 2X. This baby was still opening with force when it lands in the bumper. I hope this makes sense.
