I spent a fair amount of time trying to come up with a model for combustion spud guns. You might take a look at the archives of my posts in Spudtech.
Intro: Towards a mathematical model of combustion spud guns
http://www.spudfiles.com/spudtech_archi ... hp?t=15477
Part I: Towards a model of combustion spud gun
http://www.spudfiles.com/spudtech_archi ... hp?t=15478
Part II: Combustion / Compressed Air gun performance disconnect
http://www.spudfiles.com/spudtech_archi ... hp?t=15498
Part III: How efficient can a combustion gun be?
http://www.spudfiles.com/spudtech_archi ... hp?t=15526
Part IV: Modeling closed combustion chamber
http://www.spudfiles.com/spudtech_archi ... hp?t=15557
Part V: Adiabatic Gun Model
Alternate title: The Spud Finally moves!
It ain't easy. Not to belittle GGDT or anything, but a combustion gun is a
lot more complex than a compressed air gun.
You would think that a since a combustion spud gun is basically an internal combustion engine (and a hybrid gun is identical to an ICE) that there would be a large number of models, equations etc. developed for ICEs that would be directly applicable to combustion spudguns.
Near as I can tell, this is not the case. Numeric models for ICEs are very complex. Full blown simulations are so complex that the code is either proprietary or only available if you shell out big $$$$. Google "flamelet model combustion".
A couple flamelet papers (abstracts only, even the reprint costs are too much for me);
one,
two
(D_Hall, this is why I asked if you had access to a decent technical library, I'll bet that you can get the full papers for free.)
I vaguely recall that NASA (or some other gov't agency) has a free simulation program but I've never tried it.
There are several challenges to modeling the combustion process;
1. The form function. Exactly analogous to solid propellants, it is just the shape of the flame front. Not really all that difficult as long as the flame front is laminar. Turbulence makes things not only complex but chaotic.
2. The flame front speed; laminar isn't to bad, turbulent is very difficult.
3. It is possible to model the flame front speed if you know the temperature and pressure but, what is the temperature of the gas 1/4" from the flame front? Bulk (average) values are fairly easy to get, but they are very crude approximations to what is happening in the vicinity of the flame front, which is what matters.
4. Heat loss is significant, a heck of a lot of energy is lost as heat transfer to the gun.
With my combustion model I can predict several of the "oddities" of combustion spud guns, in particular the gross burn rate, peak pressure and the maximum efficiency at a CB of ~0.8. That last one is the real oddball of spud gunning and is, I think, the most interesting test of a combustion model.
I've done some rough calculations on D_Halls big-ass-gun. My model doesn't handle multiple sparks or hybrid ratios or approaching the speed of sound (which is actually pretty irrelevant to the internal ballistics)...
For a chamber 1/6th the size proposed (this was done to model a single spark gap), with a barrel scaled in area to 1/6th the real barrel (30' long), burst disk set to just a hair under the theoretical peak pressure of 1X propane + air, 1Kg projectile with 10 pounds dynamic friction, the model's treatment of heat loss turned off... insert a bunch more caveats here.
Burn time of the fuel: 380mS (a typical sized 1X gun burns in ~50mS)
Peak pressure: 121.6 PSIG
Total fuel energy: ~4.6MJ (this result is trivial, based on the HOC of propane in air and chamber volume)
Projectile muzzle velocity: 1370 FPS
Projectile exits at: 420mS after ignition
Exit Temp: 2562K
Exit Pressure: 107.3 PSIG
Efficiency: 1.9%
Actual CB ratio: 11.2:1
Optimal CB ratio: 0.23:1 (heat loss is turned off so the model pretty much acts like a pneumatic model in terms of CB)
Optimal barrel length: 1450 feet
Projectile velocity at optimal CB: 4500 FPS
Turning on heat loss (and making a wild ass guess at the thermal characteristics of a gun this big) gives;
Burn time of the fuel: no change
Peak pressure: 112.7 PSIG (dropped by 9 PSIG)
Total fuel energy: ~4.6MJ (no change)
Projectile muzzle velocity: 1270 FPS (dropped by 100 FPS)
Projectile exits at: 427mS after ignition (increased by 7mS)
Exit Temp: 2466K (dropped by ~100K)
Exit Pressure: 89 PSIG (dropped by 20 PSIG)
Efficiency: 1.6% (dropped by 0.3)
Actual CB ratio: 11.2:1 (same)
Optimal CB ratio: 0.81:1 (heat loss is turned on)
Optimal barrel length: 411 feet (dropped by 1000')
Projectile velocity at optimal CB: 2830 FPS (dropped by ~2x)